Ilies, Horea

horea ilies

Pratt & Whitney Professor of Digital Design and Manufacturing
Director, School of Mechanical, Aerospace and Manufacturing Engineering
Director, DREAM Research Center

Research Lab Computational Design Lab
Email horea.ilies@uconn.edu
Phone (860) 486-8813
Mailing Address School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Rd. U-3139, Storrs, CT 06269
Campus Storrs

Brief Bio

Prof. Horea Ilies is the Pratt & Whitney Professor and Director of the School of Mechanical, Aerospace, and Manufacturing Engineering at the University of Connecticut (UConn), as well as the Director of UConn’s DREAM research center. He earned his Ph.D. in Mechanical Engineering from the University of Wisconsin–Madison and holds M.S. degrees in Mechanics and in Mechanical Engineering from Michigan State University and the Technical University of Cluj, Romania. Before transitioning to academia, Dr. Ilies gained extensive industrial experience with Ford Motor Company, where he worked in research, manufacturing, and product design and development.

His research centers on geometric and physical computing for complex systems, nanorobotic technologies, the development and integration of artificial intelligence in engineering, and the theoretical and computational foundations of systematic design and manufacturing. Dr. Ilies received the NSF CAREER Award in 2007 and, together with his graduate students, has earned several Best Paper awards. He is an elected member of the Connecticut Academy of Science and Engineering (CASE) and a Fellow of ASME.

 

  • geometric and physical modeling of complex systems
  • theoretical and computational foundations for design and manufacturing
  • AI in engineering design
  • (nano-)robotics
  • A Universal Framework for Geometric Information in Product Development, NSF: #2312175
  • FINDFabs: Searching The Universe of Manufactured Parts Through Proxy Geometric Representations, NSF: #2232612
  • 3D Spatial Packaging and Routing with Maximal Spherical Decompositions, DARPA, 2023
  • CAD Defeaturing Tool Development for Navy Virtual Prototyping Applications, Office of Naval Research/NIUVT, 2022-2024
  • UConn-GAANN: EnCoDiT: Engineering Cognitive Digital Twin Technologies for Predictive Design and Manufacturing, US Department of Education, 2021 - 2026
  • ME 5895 ME 3295 Artificial Intelligence in Engineering Design and Manufacturing (2014)
  • ME 5155 Geometric Modeling
  • ME 3225 Computer Aided Design
  • ME 3224 Analysis and Design of Mechanisms
  • Behzadi, M. M., Zaffetti, P., Chen, J., Zeidner, L. E., & Ilieş, H. T. (2025). Journal of Mechanical Design, 147(7).
  • Kazerounian, K., & Ilieş, H. (2024). The Evolving Role of Robot Kinematics in Bio-Nanotechnology. Advances in Robot Kinematics, 77–87.
  • Behzadi, M. M., & Ilieş, H. T. (2024). Taming Connectedness in Machine-Learning-based Topology Optimization with Connectivity Graphs. Computer-Aided Design, 168, 103634.
  • Chorsi, M., Linthicum, W., Pozhidaeva, A., Mundrane, C., Mulligan, V. K., Chen, Y., Tavousi, P., Gorbatyuk, V., Vinogradova, O., Hoch, J. C., Huey, B. D., Nguyen, T. D., Soh, H. T., Kazerounian, K., & Ilies, H. (2024). Ultra-confined controllable cyclic peptides as supramolecular biomaterials. Nano Today, 56, 102247.
  • Vahedi, A. M., & Ilies, H. T. (2024). SPGD: Steepest Perturbed Gradient Descent Optimization. https://arxiv.org/abs/2411.04946
  • Chorsi, M. T., Le, T. T., Lin, F., Vinikoor, T., Das, R., Stevens, J. F., Mundrane, C., Park, J., Tran, K. T. M., Liu, Y., Pfund, J., Thompson, R., He, W., Jain, M., Morales-Acosta, M. D., Bilal, O. R., Kazerounian, K., Ilies, H., & Nguyen, T. D. (2023). Highly piezoelectric, biodegradable, and flexible amino acid nanofibers for medical applications. Science Advances, 9(24), eadg6075.
  • Peddada, S. R. T., Zeidner, L. E., Ilies, H. T., James, K. A., & Allison, J. T. (2022). Toward Holistic Design of Spatial Packaging of Interconnected Systems With Physical Interactions (SPI2). Journal of Mechanical Design, 144(12), 120801. https://doi.org/10.1115/1.4055055
  • Madani, M., Behzadi, M. M., Song, D., Ilies, H. T., & Tarakanova, A. (2022). Improved inter-residue contact prediction via a hybrid generative model and dynamic loss function. Computational and Structural Biotechnology Journal, 20, 6138–6148.
  • Chen, J., Ilies, H. T., & Ding, C. (2022). Graph-Based Shape Analysis for Heterogeneous Geometric Datasets: Similarity, Retrieval and Substructure Matching. Computer-Aided Design, 143, 103125. https://www.sciencedirect.com/science/article/pii/S0010448521001366
  • Behzadi, M. M., & Ilieş, H. T. (2022). GANTL: Toward practical and real-time topology optimization with conditional generative adversarial networks and transfer learning. Journal of Mechanical Design, 144(2), 021711.
  • Chorsi, M. T., Tavousi, P., Mundrane, C., Gorbatyuk, V., Kazerounian, K., & Ilies, H. (2021). Kinematic Design of Functional Nanoscale Mechanisms From Molecular Primitives. Journal of Micro and Nano-Manufacturing, 9(2), 021005. https://doi.org/10.1115/1.4051472
  • Huber, M., Eschbach, M., Kazerounian, K., & Ilies, H. (2021). Functional Evaluation of a Personalized Orthosis for Knee Osteoarthritis: A Motion Capture Analysis. Journal of Medical Devices, 15(4), 041003. https://doi.org/10.1115/1.4051626
  • Behzadi, M. M., & Ilieş, H. T. (2021). Real-Time Topology Optimization in 3D via Deep Transfer Learning. Computer-Aided Design, 135, 103014. https://www.sciencedirect.com/science/article/pii/S0010448521000257
  • Chen, J., & Ilieş, H. T. (2020). Maximal Disjoint Ball Decompositions for shape modeling and analysis. Computer-Aided Design, 126, 102850. https://www.sciencedirect.com/science/article/pii/S0010448520300439
    Chorsi, M. T., Curry, E. J., Chorsi, H. T., Das, R., Baroody, J., Purohit, P. K., Ilies, H., & Nguyen, T. D. (2019). Piezoelectric Biomaterials for Sensors and Actuators. Advanced Materials, 31(1), 1802084. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201802084
  • Corcodel, R. I., & Ilies, H. T. (2018). Printability analysis in additive manufacturing. Computer-Aided Design and Applications, 15(3), 318–329.
  • Curry, E. J., Ke, K., Chorsi, M. T., Wrobel, K. S., Miller III, A. N., Patel, A., Kim, I., Feng, J., Yue, L., Wu, Q., & others. (2018). Biodegradable piezoelectric force sensor. Proceedings of the National Academy of Sciences, 115(5), 909–914.
  • Williams, R. M., & Ilieş, H. T. (2018). Practical shape analysis and segmentation methods for point cloud models. Computer Aided Geometric Design, 67, 97–120. https://www.sciencedirect.com/science/article/pii/S0167839618301213
  • Behandish, M., & Ilies, H. T. (2017). Shape complementarity analysis for objects of arbitrary shape. ArXiv Preprint ArXiv:1712.00238.
  • Zhao, X., & Ilieş, H. T. (2017). Learned 3D shape descriptors for classifying 3D point cloud models. Computer-Aided Design and Applications, 14(4), 507–515.
  • Williams, R. M., & Ilieş, H. T. (2017). Adaptive eigensystem truncation for spectral shape signatures. Computer-Aided Design and Applications, 14(6), 770–777.
  • Behandish, M., & Ilies, H. T. (2017). Haptic Assembly and Prototyping: An Expository Review. ArXiv Preprint ArXiv:1712.00750.
  • Tavousi, P., Kazerounian, K., & Ilies, H. (2016). Synthesizing Functional Mechanisms From a Link Soup. Journal of Mechanical Design, 138(6), 062303. https://doi.org/10.1115/1.4033394
  • Behandish, M., & Ilieş, H. T. (2016). Analytic methods for geometric modeling via spherical decomposition. Computer-Aided Design, 70, 100–115. SPM 2015. https://www.sciencedirect.com/science/article/pii/S0010448515000962
  • Behandish, M., & Ilieş, H. T. (2016). Haptic assembly using skeletal densities and Fourier transforms. Journal of Computing and Information Science in Engineering, 16(2), 021002.
  • Ragsdell, K., Papalambros, P., Mistree, F., Williams, C., Rai, R., Panchal, J., Ferguson, S., DuPont, B., Allison, J., Ilies, H., & others. (2015). New Perspectives on Design Automation: Celebrating the 40th anniversary of the ASME Design Automation Conference. Journal of Mechanical Design, Transactions of the ASME, 137(5), 050301.
  • Behandish, M., & Ilieş, H. T. (2015). Peg-in-hole revisited: A generic force model for haptic assembly. Journal of Computing and Information Science in Engineering, 15(4), 041004.
  • Tavousi, P., Behandish, M., Ilieş, H. T., & Kazerounian, K. (2015). Protofold II: Enhanced model and implementation for kinetostatic protein folding. Journal of Nanotechnology in Engineering and Medicine, 6(3), 034601.
  • Periverzov, F., & Ilieş, H. T. (2012). 3D Imaging for hand gesture recognition: Exploring the software-hardware interaction of current technologies. 3D Research, 3(3), 1–15.
  • Eftekharian, A. A., & Ilieş, H. T. (2012). Medial Zones: Formulation and Applications. Computer-Aided Design, 44(5), 413–423. https://www.sciencedirect.com/science/article/pii/S0010448511003198
  • Flanagan, D., Ilies, H., O’brien, B., McManus, A., & Larrow, B. (2012). Jaw bite force measurement device. Journal of Oral Implantology, 38(4), 361–364.
  • Eftekharian, A. a., & Ilieş, H. t. (2011). A Family of Skeletons for Motion Planning and Geometric Reasoning Applications. Artif. Intell. Eng. Des. Anal. Manuf., 25(4), 375–392. https://doi.org/10.1017/S0890060411000229

Fellow of ASME; elected member of the Connecticut Academy of Science and Engineering (CASE)