Nakhmanson, Serge

Serge Nakhmanson

Associate Professor, Materials Science & Engineering

Email serge.nakhmanson@uconn.edu
Phone 860-486-5252
Mailing Address Materials Science and Engineering 25 King Hill Road, Unit 3136 University of Connecticut Storrs, CT 06269-3136
Campus Storrs
Link Department Page
Google Scholar Link

Brief Bio

Dr. Serge M. Nakhmanson is an Associate Professor in the Department of Materials Science & Engineering at the University of Connecticut. He also holds the position of Director for Accreditation within the department. Nakhmanson earned his Ph.D. from Ohio University in 2001. Prior to joining the University of Connecticut, he was a postdoctoral research associate at Rutgers University (2004-2006) and at NC State University (2001-2004). He was also a former scientist with the Argonne National Laboratory.

He is described as a "digital alchemist", specializing in computer-based design and discovery of advanced multifunctional materials. He uses simulations to design materials with enhanced properties like electrical conductivity and mechanical toughness, and even to create novel materials with unique functionalities. His work involves meticulously adjusting the identities and chemical bonds of individual atoms in a virtual environment to achieve desired material properties.

Nakhmanson's group at the University of Connecticut is known as "Complex Materials by Computational Design" and has a website dedicated to their research: http://satori.ims.uconn.edu/. He was a co-organizer of the "Mesoscale phenomena in ceramic materials" symposium where students from his group presented their work. His work has also been featured on the cover of the Journal of Applied Physics.

  • Multifunctional ferroic materials by rational design with quantum-mechanical calculations
  • Building morphotropic phase boundaries into materials to achieve enhancement of functional properties
  • Mesoscale simulations of electroactive materials and nanostructures
  • “Soft” multifunctional materials: polymers, oligomers, molecular crystals and cocrystals
  • Spring MSE-2002 Introduction to Structure, Properties and Processing of Materials II
  • Fall MSE-4001 Electrical and Magnetic Properties of Materials
  • Spring MSE-5305 Phase Transformations in Solids

[68] L. Kuna, J. Mangeri, E. P. Gorzkowski, J. A. Wollmershauser, and S. Nakhmanson, Mesoscale modeling of light transmission modulation in ceramics, Acta Mater. 193, 261 (2020).

[67] L. Kuna, J. Mangeri, E. P. Gorzkowski, J. A. Wollmershauser, and S. Nakhmanson, Mesoscale modeling of polycrystalline light transmission, Acta Mater. 175, 82 (2019).

[66] D. Zhu, J. Mangeri, R. Wang, and S. Nakhmanson, Size, shape, and orientation dependence of the field-induced behavior in ferroelectric nanoparticles, J. Appl. Phys. 125, 134102 (2019).

[65] K. C. Pitike, N. Khakpash, J. Mangeri, G. A. Rossetti Jr., and S. M. Nakhmanson, Landau-Devonshire thermodynamic potentials for displacive perovskite ferroelectrics from first principles, J. Mater. Sci. 54, 8381 (2019).

[64] A. Ghosh, D. Trujillo, H. Choi, S. Nakhmanson, S. P. Alpay, and J.-X. Zhu, Electronic and Magnetic Properties of Lanthanum and Strontium Doped Bismuth Ferrite: A First-Principles Study, Sci. Rep. 9, 194 (2019).

[63] Assessment of machine learning approaches for predicting the crystallization propensity of active pharmaceutical ingredients, Cryst. Eng. Comm. 21, 1215 (2019).

[62] J. Mangeri, S. P. Alpay, S. Nakhmanson, and O. G. Heinonen, Electromechanical control of polarization vortex ordering in an interacting ferroelectric-dielectric composite dimer, Appl. Phys. Lett. 113, 092901 (2018).

[61] K. C. Pitike, J. Mangeri, H. Whitelock, T. Patel, P. Dyer, S. Pamir Alpay, and S. Nakhmanson, Metastable vortex-like polarization textures in ferroelectric nanoparticles of different shapes and sizes, J. Appl. Phys. 124, 064104 (2018).

[60] A. Ghosh, L. Louis, A. D. Asandei, and S. Nakhmanson, First-principles studies of spontaneous polarization in mixed poly(vinylidene fluoride) / 2,3,3,3-tetrafluoropropene polymer crystals, Soft Matter 14, 2484 (2018).

[59] R. Agarwal, Y. Sharma, S. Chang, K. C. Pitike, C. Sohn, S. M. Nakhmanson, C. G. Takoudis, H. N. Lee, R. Tonelli, J. Gardner, J. F. Scott, R. S. Katiyar, S. Hong, Room-temperature relaxor ferroelectricity and photovoltaic effects in tin titanate directly deposited on a silicon substrate, Phys. Rev. B 97, 054109 (2018).

[58] J. Park, J. Mangeri, Q. Zhang, M. H. Yusuf, A. Pateras, M. Dawber, M. V. Holt, O. G. Heinonen, S. Nakhmanson, and P. G. Evans, Domain alignment within ferroelectric/dielectric PbTiO3/SrTiO3 superlattice nanostructures, Nanoscale 10, 3262 (2018).

[57] L. Louis, K. C. Pitike, A. Ghosh, S. Poddar, S. Ducharme and S. Nakhmanson, Polarization canting in ferroelectric diisopropylammonium-halide molecular crystals: a first principles study, J. Mater. Chem. C 6, 1143 (2018).

[56] L. Kuna, J. Mangeri, P.-X. Gao, S. Nakhmanson, Stress-induced shift of band gap in ZnO nanowires from finite-element modeling, Phys. Rev. Applied 8, 034031 (2017).

[55] S. F. Yuk, K. C. Pitike, S. M. Nakhmanson, M. Eisenbach, Y. W. Li, V. R. Cooper, Towards an accurate description of perovskite ferroelectrics: exchange and correlation effects, Sci. Rep. 7, 43482 (2017).

[54] J. Mangeri, Y. Espinal, A. Jokisaari, S. P. Alpay, S. Nakhmanson, O. Heinonen, Topological phase transformations and intrinsic size effects in ferroelectric nanoparticles, Nanoscale 9, 1616 (2017).

[53] A. Ghosh, T. Ahmed, D. A. Yarotski, S. M. Nakhmanson, J.-X. Zhu, Oxygen vacancy effects on double perovskite Bi2FeMnO6: A first-principles study, Europhys. Lett. 116, 57002 (2016).

[52] T. Wang, K. C. Pitike, Y. Yuan, S. M. Nakhmanson, V. Gopalan, B. Jalan, Chemistry, growth kinetics, and epitaxial stabilization of Sn2+ in Sn-doped SrTiO3 using (CH3)6Sn2 tin precursor, APL Mater. 4, 126111 (2016).

[51] J. Mangeri, K. C. Pitike, S. P. Alpay, S. M. Nakhmanson, Amplitudon and Phason Modes of Electrocaloric Energy Interconversion, NPJ Comp. Mater. 2, 16020 (2016).

[50] S. Hong, S. M. Nakhmanson, D. D. Fong, Screening mechanisms at polar oxide heterointerfaces, Rep. Prog. Phys. 79, 076501 (2016).

[49] S. Chang, S. K. Selvaraj, Y.-Y. Choi, S. Hong, S. M. Nakhmanson, and C. G. Takoudis, Atomic layer deposition of environmentally benign SnTiOx as a potential ferroelectric material, J. Vac. Sci. Technol. A 34, 01A119 (2016).

[48] M. P. Cosgriff, P. Chen, S. S. Lee, H. J. Lee, L. Kuna, K. C. Pitike, L. Louis, W. D. Parker, H. Tajiri, S. M. Nakhmanson, J. Y. Jo, Z. Chen, L. Chen, and P. G. Evans, Nanosecond Phase Transition Dynamics in Compressively Strained Epitaxial BiFeO3, Adv. Electron. Mater. 2, 1500204 (2016).

[47] Y. Li, C. Adamo, P. Chen, P. G. Evans, S. M. Nakhmanson, W. Parker, C. E. Rowland, R. D. Schaller, D. G. Schlom, D. A. Walko, H. Wen, and Q. Zhang, Giant optical enhancement of strain gradient in ferroelectric BiFeO3 thin films and its physical origin, Sci. Rep. 5, 16650 (2015).

[46] F.-C. Sun, A. M. Dongare, A. D. Asandei, S. P. Alpay and S. Nakhmanson, Temperature dependent structural, elastic, and polar properties of ferroelectric polyvinylidene fluoride and trifluoroethylene copolymers, J. Mater. Chem. C 3, 8389-8396 (2015).

[45] J. Mangeri, O. Heinonen, D. Karpeyev, and S. Nakhmanson, Influence of Elastic and Surface Strains on the Optical Properties of Semiconducting Core-Shell Nanoparticles, Phys. Rev. Applied 4, 014001 (2015).

[44] L. Louis and S. M. Nakhmanson, Structural, vibrational, and dielectric properties of Ruddlesden-Popper Ba2ZrO4 from first principles, Phys. Rev. B 91, 134103 (2015).

[43] K. C. Pitike, W. D. Parker, L. Louis, and S. M. Nakhmanson, First-principles studies of lone-pair-induced distortions in epitaxial phases of perovskite SnTiO3 and PbTiO3, Phys. Rev. B 91, 035112 (2015).

[42] J. H. Lee, G. Luo, I. C. Tung, S. H. Chang, Z. Luo, M. Malshe, M. Gadre, A. Bhattacharya, S. M. Nakhmanson, J. A. Eastman, H. Hong, J. Jellinek, D. Morgan, D. D. Fong, and J. W. Freeland, Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy, Nature Mater. 13, 879-883 (2014).

[41] Byounghak Lee, Serge M. Nakhmanson and Olle Heinonen, Strain induced vortex-to-uniform polarization transitions in soft-ferroelectric nanoparticles, Appl. Phys. Lett. 104, 262906 (2014).

[40] D. J. Li, S. Hong, S. Gu, Y. Choi, S. Nakhmanson, O. Heinonen, D. Karpeev and K. No, Polymer piezoelectric energy harvesters for low wind speed, Appl. Phys. Lett. 104, 012902 (2014).

[39] W. D. Parker and S. M. Nakhmanson, Density functional study of the structural, electronic, and vibrational properties of  β-Ba2TiO4, Phys. Rev. B 88, 245108 (2013).

[38] W. D. Parker and S. M. Nakhmanson, Strain-induced incommensurate distortions in epitaxial Ruddlesden-Popper-type Ba2TiO4, Phys. Rev. B 88, 035203 (2013).

[37] J. He, G. B. Stephenson, S. M. Nakhmanson, Electronic surface compensation of polarization in PbTiO3 films, J. Appl. Phys. 112, 054112 (2012).

[36] V. Zelezny, A. Soukiassian, X. X. Xi, D. G. Schlom, J. Hlinka, C. Kadlec and S. M. Nakhmanson, Infrared Spectroscopy of Nanoscopic Epitaxial BaTiO3/SrTiO3 Superlattices, Integrated Ferroelectrics 134, 146 (2012).

[35] P. Chen, J. Y. Jo, H. N. Lee, E. M. Dufresne, S. M. Nakhmanson, and P. G. Evans, Domain- and symmetry-transition origins of reduced nanosecond piezoelectricity in ferroelectric/dielectric superlattices, New J. Phys. 14, 013034 (2012).

[34] W. D. Parker, J. M. Rondinelli, and S. M. Nakhmanson, First-principles study of misfit strain-stabilized ferroelectric SnTiO3, Phys. Rev. B 84, 245126 (2011).

[33] J. Hlinka, V. Zelezny, S. M. Nakhmanson, A. Soukiassian, X. X. Xi, and D. G. Schlom, Soft-mode Spectroscopy of epitaxial BaTiO3/SrTiO3 Superlattices, Phys. Rev. B 82, 224102 (2010).

[32] J. Y. Jo, R. J. Sichel, E. M. Dufresne, H. N. Lee, S. M. Nakhmanson, and P. G. Evans, Component-specific electromechanical response in a ferroelectric/dielectric superlattice, Phys. Rev. B 82, 174116 (2010).

[31] J. Y. Jo, R. J. Sichel, H. N. Lee, S. M. Nakhmanson, E. M. Dufresne, and P. G. Evans, Piezoelectricity in the dielectric component of nanoscale dielectric/ferroelectric superlattices, Phys. Rev. Lett. 104, 207601 (2010).

[30] S. M. Nakhmanson, R. Korlacki, J. Travis Johnson, S. Ducharme, Z. Ge and J. M. Takacs, Vibrational properties of ferroelectric β-vinylidene fiuoride polymers and oligomers, Phys. Rev. B 81, 174120 (2010).

[29] V. Ranjan, L. Yu, S. Nakhmanson, J. Bernholc, M. Buongiorno Nardelli, Polarization Effects and Phase Equilibria in High Energy Density PVDF-based Polymers, Acta Cryst. A 66, 553-557 (2010).

[28] S. M. Nakhmanson and I. Naumov, Goldstone-like states in a layered perovskite with frustrated polarization: a first-principles investigation of PbSr2Ti2O7, Phys. Rev. Lett. 104, 097601 (2010).

[27] S. M. Nakhmanson, Revealing latent structural instabilities in perovskite ferroelectrics by layering and epitaxial strain: a first-principles study of Ruddlesden Popper superlattices, Phys. Rev. B 78, 064107 (2008).

[26] D. A. Tenne, I. E. Gonenli, A. Soukiassian, D. G. Schlom, S. M. Nakhmanson, K. M. Rabe, X. X. Xi, Raman study of oxygen reduced and re-oxidized strontium titanate, Phys. Rev. B 76, 024303 (2007).

[25] H. N. Lee, S. M. Nakhmanson, M. F. Chisholm, H. M. Christen, K. M. Rabe, and D. Vanderbilt, Suppressed Dependence of Polarization on Epitaxial Strain in Highly Polar Ferroelectrics, Phys. Rev. Lett. 98, 217602 (2007).

[24] J. Bernholc, W. Lu, S. M. Nakhmanson, P. H. Hahn, V. Meunier, M. Buongiorno Nardelli, W. G. Schmidt, Atomic scale design of nanostructures, Mol. Phys. 105, 147-156 (2007).

[23] D. A. Tenne, A. Bruchhausen, N. D. Lanzillotti Kimura, A. Fainstein, R. S. Katiyar, A. Cantarero, A. Soukiassian, V. Vaithyanathan, J. H. Haeni, W. Tian, D. G. Schlom, K. J. Choi, D. M. Kim, C.-B. Eom, H. P. Sun, X. Q. Pan, Y. L. Li, L. Q. Chen, Q. X. Jia, S. M. Nakhmanson, K. M. Rabe, and X. X. Xi, Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy, Science 313, 1614-1616 (2006).

[22] S. M. Nakhmanson, K. M. Rabe, and D. Vanderbilt, Predicting polarization enhancement in multicomponent ferroelectric superlattices, Phys. Rev. B 73, 060101(R) (2006).

[21] S. M. Nakhmanson, M. Buongiorno Nardelli, and J. Bernholc, Collective polarization effects in β-polyvinylidene fluoride and its copolymers with tri- and tetrafluoroethylene, Phys. Rev. B 72, 115210 (2005).

[20] S. M. Nakhmanson, K. M. Rabe, and D. Vanderbilt, Polarization enhancement in two- and three-component ferroelectric superlattices, Appl. Phys. Lett. 87, 102906 (2005).

[19] J. Bernholc, S. M. Nakhmanson, M. Buongiorno Nardelli, and V. Meunier, Understanding and enhancing polarization in complex materials, Comput. Sci. Eng. 6, 12-21 (2004).

[18] S. V. Khare, S. M. Nakhmanson, P. M. Voyles, P. Keblinski, and J. R. Abelson, Evidence from simulations for orientational medium range order in microscopy observations of a-Si, Microsc. Microanal. 10 (Suppl 2), 820-821 (2004).

[17] S. V. Khare, S. M. Nakhmanson, P. M. Voyles, P. Keblinski, and J. R. Abelson, Evidence from atomistic simulations of fluctuation electron microscopy for preferred local orientations in amorphous silicon, Appl. Phys. Lett. 85, 745-747 (2004).

[16] S. M. Nakhmanson, M. Buongiorno Nardelli and J. Bernholc, Ab initio studies of polarization and piezoelectricity in vinylidene fluoride and BN-based polymers, Phys. Rev. Lett. 92, 115504 (2004).

[15] S. M. Nakhmanson, A. Calzolari, V. Meunier, J. Bernholc and M. Buongiorno Nardelli, Spontaneous polarization and piezoelectricity in boron nitride nanotubes, Phys. Rev. B 67, 235406 (2003).

[14] J. Fabian, J. L. Feldman, C. Stephen Hellberg, and S. M. Nakhmanson, Numerical study of anharmonic vibrational decay in amorphous and paracrystalline silicon, Phys. Rev. B 67, 224302 (2003).

[13] S. M. Nakhmanson, D. A. Drabold and N. Mousseau, Comment on “Boson peak in amorphous silicon: A numerical study,” Phys. Rev. B 66, 087201 (2002).

[12] S. M. Nakhmanson and N. Mousseau, Crystallization study of model tetrahedral semiconductors, J. Phys.: Condens. Matter 14, 6627-6638 (2002).

[11] N. Mousseau, G. T. Barkema and S. M. Nakhmanson, Recent developments in the study of continuous random networks, Philos. Mag. B 82, 171-183 (2002).

[10] S. Nakhmanson, N. Mousseau, G. T. Barkema, P. M. Voyles and D. A. Drabold, Models of Paracrystalline Silicon with a Defect-Free Bandgap, Intl. J. Mod. Phys. B 15 3253-3257 (2001).

[9] P. M. Voyles, N. Zotov, S. M. Nakhmanson, D. A. Drabold, J. M. Gibson, M. M. J. Treacy, P. J. Keblinski, Structure and Physical Properties of Paracrystalline Atomistic Models of Amorphous Silicon, J. Appl. Phys. 90, 4437-4451 (2001).

[8] S. Nakhmanson, P. M. Voyles, N. Mousseau, G. T. Barkema and D. A. Drabold, Realistic Models of Paracrystalline Silicon, Phys. Rev. B 63, 235207 (2001).

[7] S. Nakhmanson and D. A. Drabold, Low-temperature anomalous specific heat without tunneling modes: a simulation for a-Si with voids, Phys. Rev. B 61, 5376-5380 (2000).

[6] S. Nakhmanson and D. A. Drabold, Computer simulation of low-energy excitations in amorphous silicon with voids, J. Non-Cryst. Sol. 266-269, 156-160 (2000).

[5] D. A. Drabold, U. Stephan, J. Dong and S. Nakhmanson, The structure of electronic states in amorphous silicon, J. Mol. Graphics Mod. 17, 285-291, (1999).

[4] P. A. Fedders, D. A. Drabold and S. Nakhmanson, Theoretical study on the nature of band-tail states in amorphous Si, Phys. Rev. B 58, 15624-15631 (1998).

[3] S. Nakhmanson and D. A. Drabold, Approximate ab initio calculation of vibrational properties of hydrogenated amorphous silicon with inner voids, Phys. Rev. B 58, 15325-15328 (1998).

[2] S. A. Nemov, V. I. Proshin, S. M. Nakhmanson, Effect of In doping on the kinetic cofficients in solid solutions of the system (PbzSn1-z)0.95Ge0.05Te, Semiconductors 32, 1062-1064 (1998).

[1] S. M. Nakhmanson, A. Vashuta, I. V. Abarenkov, Paired states in homogeneous low-density electron gas, St-Petersburg State University Journal (1997) [in Russian].